DID01 - DOCENTI: Programma da svolgere durante l'anno scolastico

Classe:	41
Materia:	Fisica
Insegnante:	Prof. M. Piazzi
Testo utilizzato:	S. Fabbri, M. Masini, " <i>Fisica è – L'evoluzione delle idee</i> " (Vol.
	per il Secondo biennio), SEI

Argomenti previsti

ARGOMENTO	NOTE
1. Forze ed equilibrio del punto materiale	Unità 4
 Forze: definizione e carattere vettoriale di una forza; interazioni per contatto e a distanza; effetti di una forza su un corpo (deformazione e variazione dello stato di moto del corpo); misura di una forza e confronto dell'intensità di forze mediante dinamometri; unità di misura della forza nel SI Forza peso: caratteristiche; espressione analitica; differenza tra massa e peso di un corpo Forza elastica e legge di Hooke: risposta elastica e plastica di un corpo ad una sollecitazione esterna; proporzionalità diretta tra forza applicata ed elongazione di una molla: espressione scalare della forza elastica di una molla; forma vettoriale del legame tra forza elastica ed elongazione di una molla e legge di Hooke; significato geometrico della costante elastica di una molla in un grafico F-ΔL Forza di attrito: attrito radente, volvente, viscoso; modulo, direzione e verso delle forze d'attrito radente statico e dinamico; forza premente su un piano orizzontale; origine microscopica dell'attrito radente Equilibrio statico e dinamico di un punto materiale: definizione; condizione di equilibrio; studio dell'equilibrio di un corpo su piani orizzontali, su piani inclinati o 	Fondamentale
appeso: reazione vincolare e tensione di funi/cavi	
2. Dinamica del punto materiale	Unità 10
 Dinamica: cosa studia; cenni storici alla sua evoluzione da Aristotele a Galilei e Newton Principi della dinamica: enunciato del primo principio e sistemi di riferimento inerziali; enunciato del secondo principio, massa inerziale di un corpo e proporzionalità diretta tra risultante delle forze applicate a un corpo e sua accelerazione; enunciato del terzo principio e interpretazione delle forze come interazioni tra oggetti Applicazione dei principi della dinamica allo studio del moto di un punto materiale su piani orizzontali e su piani 	Fondamentale

	inclinati								
3.	inclinati 3. Lavoro, energia e principio di conservazione Unità 12, 13								
	dell'energia meccanica di un sistema fisico	Fondamentale							
	 Lavoro compiuto da una forza costante parallela o meno 								
	allo spostamento di un corpo; lavoro totale compiuto da								
	più forze agenti su un sistema; unità di misura del								
	lavoro nel SI								
	Potenza: definizione								
	 Energia di un sistema fisico: definizione; differenti tipi di energia 								
	 Energia cinetica traslazionale di uno o più punti materiali; teorema delle forze vive 								
	• Forze conservative: definizione; energia potenziale, sua								
	variazione e lavoro compiuto dalle forze conservative;								
	espressione analitica dell'energia potenziale della forza								
	peso e dell'energia potenziale elastica								
	Energia meccanica di un sistema fisico; principio di								
	conservazione dell'energia meccanica; forze dissipative,								
	variazione dell'energia meccanica di un sistema fisico e								
1	lavoro compiuto da forze dissipative Impulso, quantità di moto, urti	Unità 13							
٦.	 Impulso di una forza costante e sua interpretazione 	Cenni							
	geometrica in un grafico F - t	33.1111							
	 Quantità di moto di un punto materiale e di un sistema di 								
	N punti materiali								
	Teorema dell'impulso: enunciato e applicazioni								
	Principio di conservazione della quantità di moto totale								
	in sistemi isolati								
	• Urti tra 2 corpi in una dimensione spaziale: definizione								
	fisica di urto e classificazione degli urti (elastici,								
	anelastici, completamente anelastici); cenno alla								
	cinematica degli urti elastici e completamente anelastici								
	unidimensionali								
5.	Moti planetari e gravitazione	Unità 11							
	 Moti planetari nel sistema solare: modello geocentrico 	Fondamentale							
	aristotelico-tolemaico, modello eliocentrico copernicano								
	e modello ticonico								
	Cinematica dei moti planetari nel sistema solare: le tre laggi di Kaplara								
	leggi di Keplero								
	 Dinamica dei moti planetari e interazione tra masse: legge di gravitazione universale di Newton; proprietà 								
	della forza gravitazionale agente tra masse puntiformi o								
	sferiche omogenee; legame tra forza gravitazionale e								
	forza peso agente su un corpo in prossimità della								
	superficie di un pianeta; esperimento di Cavendish e								
	valore della costante di gravitazione universale G								
	 Campo gravitazionale: concetto di campo in Fisica e sua 								
	evoluzione storica; vettore campo gravitazionale; linee								
	di forza del campo gravitazionale								

6.	6. Onde e fenomeni ondulatori							Unità 19
	•	Onde:	definizione	е	caratteristiche	dei	fenomeni	Cenni
	ondulatori; onde longitudinali e trasversali							
	• Caratteristiche fisiche delle onde periodiche: ampiezza,							
	lunghezza d'onda, periodo, frequenza, velocità							
	•	Caratte	re ondulatorio					

Criteri di formulazione delle proposte di voto quadrimestrale

Le valutazioni sono espresse con voti da 1 a 10. Il voto 1 viene utilizzato solo eccezionalmente in caso di rifiuto da parte dello studente di sottoporsi alla prova di verifica oppure in caso di evidente e gravissima scorrettezza durante la stessa.

Al termine di ogni periodo valutativo dell'anno scolastico (trimestre/pentamestre), l'insegnante propone un voto numerico in forma intera. La valutazione finale è stabilita collegialmente dal Consiglio di Classe considerando tutti gli elementi disponibili.

Il voto proposto al Consiglio di classe verrà formulato alla luce dei seguenti criteri.

a) Numero minimo di valutazioni

La proposta di voto potrà essere formulata solo se saranno verificate le condizioni indicate di seguito.

Primo trimestre: lo/la studente/studentessa dovrà avere ricevuto un numero minimo di 2 valutazioni tra prove scritte o orali.

Secondo pentamestre: lo/la studente/studentessa dovrà avere ricevuto un numero minimo di 2 valutazioni tra prove scritte o orali.

Non sarà possibile attribuire un voto finale al verificarsi di uno dei seguenti casi:

- 1. se al termine del periodo valutativo (trimestre/pentamestre) lo studente non avesse raggiunto il numero minimo di valutazioni;
- 2. se le poche valutazioni ottenute fossero concentrate in un arco di tempo troppo ristretto.

In entrambi i precedenti casi verrà assegnato il giudizio "Non Classificato" (N.C.), che comporterà il recupero del debito ("intermedio" o di sospensione del giudizio) da parte dello studente.

In caso di assenza a una verifica, questa potrà essere eventualmente recuperata anche senza preavviso, a discrezione dell'insegnante, nel corso della lezione seguente o successivamente, in forma scritta od orale, anche in ore di lezione non di Matematica, previa autorizzazione del docente in orario.

b) Modalità utilizzate per formulare la proposta di voto

Al termine di ogni periodo valutativo dell'anno scolastico (trimestre/pentamestre), l'insegnante calcolerà la media ponderata di tutti i voti conseguiti nella disciplina da parte dello studente e proporrà un voto numerico in forma intera.

L'attività concernente la valutazione finale spetterà esclusivamente all'insegnante e sarà stabilita collegialmente dal Consiglio di Classe; la media calcolata costituirà solo il punto di inizio, a partire dal quale il Consiglio di Classe perverrà alla formulazione del voto finale da esprimere sul documento di valutazione dopo aver considerato altri fattori, quali ad esempio: eventuali percorsi di recupero o di approfondimento seguiti dallo studente; l'atteggiamento dello studente in classe, la sua attenzione, la sua partecipazione al dialogo

file 4I_FISICA_Programma_previsto.doc - pag. 3

educativo, la sua puntualità e la sua costanza nello svolgimento dei compiti assegnati e nella cura della propria preparazione. Corsico, 31/10/2024 L'insegnante Marco Piazzi